35 research outputs found

    Early replication in pulmonary B cells after infection with marek's disease herpesvirus by the respiratory route

    Get PDF
    Natural infection with Marek's disease virus occurs through the respiratory mucosa after chickens inhale dander shed from infected chickens. The early events in the lung following exposure to the feather and squamous epithelial cell debris containing the viral particles remain unclear. In order to elucidate the virological and immunological consequences of MDV infection for the respiratory tract, chickens were infected by intratracheal administration of infective dander. Differences between susceptible and resistant chickens were immediately apparent, with delayed viral replication and earlier onset of interferon (IFN)-γ production in the latter. CD4+ and CD8 + T cells surrounded infected cells in the lung. Although viral replication was evident in macrophages, pulmonary B cells were the main target cell type in susceptible chickens following intratracheal infection with MDV. In accordance, depletion of B cells curtailed viremia and substantially affected pathogenesis in susceptible chickens. Together the data described here demonstrate the role of pulmonary B cells as the primary and predominant target cells and their importance for MDV pathogenesis. © 2009, Mary Ann Liebert, Inc.

    Do Gravity-Related Sensory Information Enable the Enhancement of Cortical Proprioceptive Inputs When Planning a Step in Microgravity?

    No full text
    International audienceWe recently found that the cortical response to proprioceptive stimulation was greater when participants were planning a step than when they stood still, and that this sensory facilitation was suppressed in microgravity. The aim of the present study was to test whether the absence of gravity-related sensory afferents during movement planning in microgravity prevented the proprioceptive cortical processing to be enhanced. We reestablished a reference frame in microgravity by providing and translating a horizontal support on which the participants were standing and verified whether this procedure restored the proprioceptive facilitation. The slight translation of the base of support (lateral direction), which occurred prior to step initiation, stimulated at least cutaneous and vestibular receptors. The sensitivity to proprioceptive stimulation was assessed by measuring the amplitude of the cortical somatosensory-evoked potential (SEP, over the Cz electrode) following the vibration of the leg muscle. The vibration lasted 1 s and the participants were asked to either initiate a step at the vibration offset or to remain still. We found that the early SEP (90–160 ms) was smaller when the platform was translated than when it remained stationary, revealing the existence of an interference phenomenon (i.e., when proprioceptive stimulation is preceded by the stimulation of different sensory modalities evoked by the platform translation). By contrast, the late SEP (550 ms post proprioceptive stimulation onset) was greater when the translation preceded the vibration compared to a condition without pre-stimulation (i.e., no translation). This suggests that restoring a body reference system which is impaired in microgravity allowed a greater proprioceptive cortical processing. Importantly, however, the late SEP was similarly increased when participants either produced a step or remained still. We propose that the absence of step-induced facilitation of proprioceptive cortical processing results from a decreased weight of proprioception in the absence of balance constraints in microgravity

    Interhemispheric Interactions between the Human Primary Somatosensory Cortices

    Get PDF
    In the somatosensory domain it is still unclear at which processing stage information reaches the opposite hemispheres. Due to dense transcallosal connections, the secondary somatosensory cortex (S2) has been proposed to be the key candidate for interhemispheric information transfer. However, recent animal studies showed that the primary somatosensory cortex (S1) might as well account for interhemispheric information transfer. Using paired median nerve somatosensory evoked potential recordings in humans we tested the hypothesis that interhemispheric inhibitory interactions in the somatosensory system occur already in an early cortical processing stage such as S1. Conditioning right S1 by electrical median nerve (MN) stimulation of the left MN (CS) resulted in a significant reduction of the N20 response in the target (left) S1 relative to a test stimulus (TS) to the right MN alone when the interstimulus interval between CS and TS was between 20 and 25 ms. No such changes were observed for later cortical components such as the N20/P25, N30, P40 and N60 amplitude. Additionally, the subcortically generated P14 response in left S1 was also not affected. These results document the existence of interhemispheric inhibitory interactions between S1 in human subjects in the critical time interval of 20–25 ms after median nerve stimulation

    A genome-wide association study of marginal zone lymphoma shows association to the HLA region

    Get PDF
    Marginal zone lymphoma (MZL) is the third most common subtype of B-cell non-Hodgkin lymphoma. Here we perform a two-stage GWAS of 1,281 MZL cases and 7,127 controls of European ancestry and identify two independent loci near BTNL2 (rs9461741, P=3.95 × 10−15) and HLA-B (rs2922994, P=2.43 × 10−9) in the HLA region significantly associated with MZL risk. This is the first evidence that genetic variation in the major histocompatibility complex influences MZL susceptibility

    The disappearance of muntjac (Muntiacus reevesi) and roe deer (Capreolus capreolus) pellet groups in a pine forest of lowland England

    No full text
    Reliable knowledge of the disappearance rate of faecal pellets is essential for converting pellet density to deer density when using standing-crop pellet-group counts. Disappearance of muntjac and roe deer pellet groups was monitored in four growth stages of a pine forest of lowland England over a 15-month period. Time to disappearance of the pellet groups (days) of both species significantly differed between habitats and months; it was shorter in late summer to early autumn and in habitats with more ground vegetation. Muntjac pellet groups disappeared more quickly than roe deer pellet groups. Time to disappearance of roe deer pellet groups was negatively correlated with air and grass temperature in pre-thicket and pre-fell habitats, while time to disappearance of muntjac pellet groups was negatively correlated with frequency of rainfall and positively correlated with the run of wind (air passage over a site within a 24-h period measured in km) in pre-thicket habitats. It is the time of the standing-crop pellet-group counts and the disappearance rate of pellet groups deposited in different months and habitats that determine the appropriate method for conversion of pellet-group density to deer density
    corecore